Planar mixed flow and chaos: Lyapunov exponents and the conjugate-pairing rule

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar mixed flow and chaos: Lyapunov exponents and the conjugate-pairing rule.

In this work we characterize the chaotic properties of atomic fluids subjected to planar mixed flow, which is a linear combination of planar shear and elongational flows, in a constant temperature thermodynamic ensemble. With the use of a recently developed nonequilibrium molecular dynamics algorithm, compatible and reproducible periodic boundary conditions are realized so that Lyapunov spectra...

متن کامل

Chaotic properties of planar elongational flow and planar shear flow: Lyapunov exponents, conjugate-pairing rule, and phase space contraction.

The simulation of planar elongational flow in a nonequilibrium steady state for arbitrarily long times has recently been made possible, combining the SLLOD algorithm with periodic boundary conditions for the simulation box. We address the fundamental questions regarding the chaotic behavior of this type of flow, comparing its chaotic properties with those of the well-established SLLOD algorithm...

متن کامل

On the Validity of the Conjugate Pairing Rule for Lyapunov Exponents

For Hamiltonian systems subject to an external potential which in the presence of a thermostat will reach a nonequilibrium stationary state Dettmann and Morriss proved a strong conjugate pairing rule (SCPR) for pairs of Lyapunov exponents in the case of isokinetic ( I K ) stationary states which have a given kinetic energy. This SCPR holds for all initial phases of the system, all times t, and ...

متن کامل

The bootstrap and Lyapunov exponents in deterministic chaos

Inasmuch as Lyapunov exponents provide a necessary condition for chaos in a dynamical system, confidence bounds on estimated Lyapunov exponents are of great interest. Estimates derived either from observations or from numerical integrations are limited to trajectories of finite length, and it is the uncertainties in (the distribution of) these finite time Lyapunov exponents which are of interes...

متن کامل

Chaos and Lyapunov exponents in classical and quantal distribution dynamics

We analytically establish the role of a spectrum of Lyapunov exponents in the evolution of phase-space distributions r(p ,q). Of particular interest is l2 , an exponent that quantifies the rate at which chaotically evolving distributions acquire structure at increasingly smaller scales and is generally larger than the maximal Lyapunov exponent l for trajectories. The approach is trajectory inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2011

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.3567095